
Optimizing Embedded Software - A Look at the
NEON SIMD unit in the ARM Cortex Family of

Processors
Johan Dams

Vaasa University of Applied Sciences
Vaasa - Finland

Email: jd@puv.fi

Abstract—The cellphone is quickly becoming the ubiquitous
device providing both phone conversations as well as Internet
access. There are approximately 4 billion mobile phones in use,
compared to about 1 billion PCs and Laptops. In the foreseeable
future, the mobile phone will become the device of choice to
access the internet. Some problems that appear when using
cellphones for Internet access are the performance requirements,
and the expected battery life. With customers demanding mobile
phones capable of playing high quality video and audio, as well
as secure Internet communication from the mobile platform,
manufacturers are trying to get as much performance as possible
into the small device, but this often goes at the cost of battery life.

In order to maximise the available computing power, yet
still provide long battery life, one has to perform optimisations
on the software level. Power management is one of the methods
to maximise battery life by turning of services when the device
is idle. The main issue however is how to be able to perform
processor intensive tasks, such as video decoding and playback,
as efficiently as possible.

The ARM Cortex family of processors contains a SIMD
(Single Instruction, Multiple Data) unit known as NEON,
primarily used for accelerating media applications such as
MPEG decoding. It offers however a high degree of flexibility,
and can be adapted quite easily to other applications besides
multimedia acceleration.

In this paper we will present some performance comparisons
between NEON optimised code and code using just ARM
instructions. We will provide a look at how to optimize existing
software, especially looking at the Linux operating system.

I. INTRODUCTION

Many new and upcoming mobile devices use the Linux
operating system at their core. Examples of this include
the phones using Google Android, and the new generation
of Nokia phones and devices such as the N900. Linux has
shown to offer a stable foundation for these kinds of devices,
and its open source and free nature can bring costs down
considerably for manufacturers. The added benefit of having
a large and loyal developer community is also an important
factor in this decision.

Linux has its popular roots in server applications. This
means that development emphasis has always been on the
ability to scale to huge amount of processors, network

throughput, etc. While performance is important on server
class hardware, it is even more important for mobile devices,
where scalability don’t really matter. Furthermore, power
management and efficiency are much more important on
mobile devices than on servers. All this indicates that there
is quite some room for improvements in this area.

II. OPTIMIZING LINUX

From the Linux kernel point of view, a lot of optimizations
for specific hardware platforms have been made already. Due
to the complexity of the software, it is not easy to determine
where optimizations would be needed, or if they would be of
benefit at all. Furthermore, it would be rather difficult to get
proper optimizations officially accepted into the kernel within
a reasonable amount of time. Added to this, the overhead of
maintaining an own kernel with specific improvements can
be a daunting task which requires resources that might not
be available - especially for smaller companies with limited
resources.

One part that gets often overlooked is the C library.
While it is true that many different implementations of the
the C library exist such as uClibc, Glibc, Eglibc, etc, these
implementations are still written with a generic hardware
platform in mind, offering for instance smaller code size,
but still carrying the majority of the code from their bigger
brother. These implementation contain only few, if any,
platform specific optimizations.

Since the C library is considerably less complex than
the Linux kernel, this is an ideal place to start optimizing.
Individual functions from the C library can be replaced
one by one, providing a focus point when analysing which
functions are used most often in a certain application. It is
also possible to provide an own library of functions, taking
over from those in the standard C library.

A. Optimising the C Library

A good point of entrance for starting this optimisation
process is the memcpy() function. It is one of the most called
functions throughout the entire system, also when running
user applications. If a speed increase can be accomplished



here, it will have direct impact on the rest of the system, and
it can prove that further improvements to other parts of the
C library make sense.

The NEON register file is viewed as 16 128-bit registers
or 32 64-bit registers, each a vector of 8/16/32-bit integers
or 32-bit floats. It is therefore ideal for operating on large
memory blocks, often the case when using memcpy().
This also means, and is inherent to the way SIMD works,
that the best performance improvements will be possible on
larger memory areas compared to small areas of several bytes.

The memcpy() function has several optimisations for
x86 and PowerPC. For ARM, there exists a Neon
optimised implementation made by CodeSourcery[1]. This
implementation however is C based and relies on compiler
optimisations to generate Neon instructions. While this is
a relatively easy way of working, compiler generated code
is likely slower than hand coded Assembler, and compiler
auto-vectorization for NEON code is still at an early stage.
This is one of those instances where hand coded Assembler
still makes sense in 2009.

Of course, it would be nice to know in advance what
kind of improvements could be expected. A substantial
amount of work on optimizing the C library functions
for the Altivec SIMD unit, found inside certain PowerPC
chips, has been done in the Freevec library project[2]. The
results obtained show a possible factor 2 to 3 speed increase
compared to the native glibc functions. It is reasonable to
expect similar improvements for NEON optimised version.

The NEON memcpy() function presented here has been
benchmarked to an already optimised version for ARM,
written in assembler, and included in glibc-ports, part of the
GNU C library[3]. The NEON version works in a similar way
to the Glibc implementation, copying 32-bit blocks where
possible. The results are shown in Fig. 1 below.

Fig. 1. NEON Vs. ARM memcpy()

The target hardware platform was the EfikaMX developer

edition running a Freescale i.MX515 ARM Cortex-A8 System
On Chip at 800MHz, produced by Genesi USA[4]. As one can
see, the NEON version performs better on all tests, even those
using small datasets of several bytes, normally not the target of
SIMD units. The operations on L2 cached data show the most
improvement with the NEON version twice as fast compared
to the ARM version. The results have been averaged over both
aligned and non-aligned data. The speed increase noted here
suggests that similar improvements can be made in several
functions dealing with memory such as memcmp(), and also
string operations such as strlen() and strcpy(). Many of these
functions do not have an ARM optimised version at all, and
performance increase can be expected to be much higher.

B. Other Optimisations

Besides the optimisations possible in the C library itself,
many applications can benefit from NEON. Matrix and vector
operations especially are prime candidates for this, and are
relatively easy to implement. During this research, a 4x4
matrix multiplication was implemented which performed 8
times faster than the standard C version.

A vector multiply-and-accumulate (VMAC) function which
took 2.3 seconds in standard C code on the ARM, took
less than 100 milliseconds using NEON. This is especially
useful in such applications such as MPEG audio decoding,
especially during the sub-band decoding process. Some of the
most impressive developments in this area have shown the
possibility to play 720p definition video on NEON equipped
ARM processors at 500Mhz. This was accomplished using
a series of NEON optimizations in the open source ffmpeg
library, posted here[5].

III. CONCLUSION

This preliminary work has shown that there are a lot
of potential optimizations possible on modern computer
architectures using SIMD units. With the push towards ever
more mobile computing, these optimizations will be able
to not only speed up intensive applications such as audio
and video decoding, they can also increase power efficiency
leading to longer battery life.

The NEON optimised version of memcpy() presented
here has shown that the underlying system of many mobile
platforms is still highly unoptimised. Future work in this
area, on optimisations, or even complete replacements, of the
underlying C library can result in better performance and
more efficient use of resources.



ACKNOWLEDGEMENT

We would like to thank Genesi USA for their generous
hardware donations.

REFERENCES

[1] CodeSourcery Arm Toolchain and C Library.
http://www.codesourcery.com/sgpp/lite/arm, Last accessed September
2009.

[2] SIMD Freevec library. http://freevec.org/, Last accessed September 2009.
[3] GNU C Library. http://www.gnu.org/software/libc/, Last accessed Septem-

ber 2009.
[4] Genesi USA. http://www.genesi-usa.com, Last accessed September 2009.
[5] ARM NEON patches for ffmpeg, http://lists.mplayerhq.hu/pipermail/ffmpeg-

devel/2008-December/056933.html, Last Aaccessed September 2009.


