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Duopoly — Part II:
Lost in Fractals

Summary:

In his fascinating book Puu (2000) shows that the dynamics of a very simple Cournot duopoly 
(with constant marginal costs and an isoelastic demand curve) may lead to an instable 
Nash-Cournot equilibrium. Furthermore a lot of "exotic" phenomena may appear like Hopf 
bifurcation, saddle-node bifurcation and fractal attractors.
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1. A static Cournot duopoly

There are two competitors producing the same homogenous good. Their supply is denoted 
as x and y. An isoelastic (invers) demand function is assumed:

p x y,( )
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x y

The duopolists produce with constant marginal costs a b 0>, . Ignoring fixed costs the 
profit functions become:
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Equating the partial derivatives to 0 ... 
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... we can solve for the reaction functions provided that the quantities are positive ...
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... and obtain the Cournot-Nash equilibrium x C y C,  from:
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Numerical example

Enter marginal costs: a 1 b 1

Adjust range of plot: x max 1 y max 1
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2. Iterative adjustment
Now assume a lagged reaction of the duopolists with

xi

yi 1

a
yi 1 and 

yi

xi 1

b
xi 1

The fixed point of this iterative process is the Cournot-Nash equilibrium. Stability of this 
equilibrium is ensured when (Puu 2000, 245 - 246): 

3 2 2.
a
b

b
a

,< 3 2 2.<

Therefore, the ratio of the marginal costs marks the critical parameter of this process. For further 
considerations let b 1. Thus only the marginal cost "a" becomes the critical parameter.

stability_check a( ) "stable Cournot point!" 3 2 2. a< 3 2 2.< 1if

"unstable Cournot point" otherwise

Now an example of chaotic production cycles is given. You may change the marginal cost 
parameter (where 0.16 a 6.25) to get stable cycles around or convergence to the Cournot 
equilibrium. (Try for example a = 1, 0.18, 0.162, 0.161, 6, 6.25).  

Enter the marginal cost parameter: 

a .16 ⇒ stability_check a( ) "unstable Cournot point"=

Actually, it has no importance at all whether both firms adjust simultaneously or take turns in their 
adjustments. The only difference is how the (essentially autonomous) time series of x and y are 
paired together. To start with an iteration, let us assume that in the beginning the x-producer 
supplies 

x0 .005

and simultaneously the y-producer responses with 

y0 x0 x0
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Given the maximum number of iterations T max 1000 the iterative adjustment follows 

i 1 T max..
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Range of plotted time periods: t begin 0 t stop 300
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The adjustment process can be described also by a cobweb diagram, where the stepwise 
decisions of the duopolists are drawn as lines connecting both reaction curves.

Range of plotted time periods: t begin 0 t stop 300
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Because we are dealing with a pair of independent iterations, we then get iterations of each of the 
variables alone, without interference of the other one (though the lag is now two periods!). For 
variable x this results in:

xi

xi 2 xi 2

a
xi 2 xi 2

This single difference equation of 2nd order reproduces the characteristics of the dynamics of the 
2-variable system. Therefore, bifurcations can be observed by plotting the time path of the 
variable x against different values of the critical parameter a into a Feigenbaum diagram. 

Resolution of graph: RES 3 1 2, .., 10,( )

Range of plotted values: a bottom .16 a top .165

x bottom 0 x top 1

(Try another interval of the parameter a, for example  [6.1, 6.25] with x top .05.)
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3. Adaptive expectations
Assume now that both firms do not immediately reach their new optimal positions, but adjust their 
previous decisions in the direction of the new optimum with the adjustment speeds λ  and µ:

xi xi 1 λ
yi 1
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yi 1 xi 1

. and 

yi yi 1 µ
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. with 0 λ µ 1,

The stability of the Cournot fixed point is checked by (Puu 2000, 249 - 250): 

stability_check a b, λ, µ,( ) "stable Cournot point!" a b( )2 4 a. b.
1
λ

1
µ

1.<if

"unstable Cournot point!" otherwise

Initial values: x0 .001 y0 .001

Maximum number of time periods: T max 20000
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Range of plotted time periods: t begin 0 t stop 300
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Enter parameters:

λ .89899

µ 1.0

b new 6.2812

a new .98101

stability_check a b, λ, µ,( ) "unstable Cournot point!"=

With the pre adjusted parameters from above you will get a fractal attractor in the nice shape of 
a "leaf". To find a Hopf bifurcation, saddle-node bifurcations and another strange attractor use 
b new µ 1, a new 0.16 and vary λ from 0.9 to 1 in small steps.

Literature:

Puu, T.: Attractors, Bifurcations, and Chaos. Nonlinear Phenomena in Economics. •
Berlin et al. 2000.
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