FH-Kiel
University of Applied Sciences
© Prof. Dr. Andreas Thiemer, 2001

Markov Chains

Summary:

This worksheet offers some simple tools to handle with Markov chains. It will be shown how to compute the ergodic distribution and to generate random simulations.

Introduction (with Example 1)

A stochastic process is a sequence of random vectors. If we study discrete time models this sequence can be ordered by a time index k , taken to be integers in this worksheet. A stochastic process $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ is said to have the Markov property if for all $\tau \geq 1$ and all k

$$
\operatorname{Prob}\left(\mathrm{x}_{\mathrm{k}+1} \mid \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}-1}, \ldots, \mathrm{x}_{\mathrm{k}-\tau}\right)=\operatorname{Prob}\left(\mathrm{x}_{\mathrm{k}+1} \mid \mathrm{x}_{\mathrm{k}}\right)
$$

Assuming this property we call such a sequence a Markov chain which is characterized by the following three objects.

1. There is a vector x which records the possible values of the state of the system; for example:
$\mathrm{x}:=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
2. There is a quadratic transition matrix P, which records the probabilities of moving from one value of the state to another in one period; for example:

$$
\mathrm{P}:=\left[\begin{array}{ccc}
0.25 & 0.5 & 0.25 \\
0.8 & 0.1 & 0.1 \\
0.4 & 0.2 & 0.4
\end{array}\right]
$$

3. There is a vector π_{0} recording the probabilities (initial distribution) of being in each state at time $\mathrm{k}=0$; for example:
$\pi_{0}:=\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$
Be sure that the single probabilities sum up to 1 . You may check this using the following subroutine, which is helpful to control the input of a matrix P with many entries:

$$
\begin{array}{l|l}
\text { validity }\left(\mathrm{P}, \pi_{0}\right):= & \begin{array}{l}
\mathrm{n} \leftarrow \mathrm{zeilen}(\mathrm{P})-1 \\
\text { for } \mathrm{i} \in 0 . . \mathrm{n} \\
\text { one }_{\mathrm{i}} \leftarrow 1
\end{array} \\
\text { "O.K." if }\left[\sum_{\mathrm{i}=0}^{\mathrm{n}}\left(\pi_{0}^{\mathrm{T}}\right)_{\mathrm{i}}=1\right] \cdot(\mathrm{P} \cdot \text { one }=\mathrm{one})
\end{array}
$$

validity $\left(\mathrm{P}, \pi_{0}\right)=$ "O.K."

The probability of moving from state i to state j in k periods is $\left(\mathrm{P}^{\mathrm{k}}\right)_{\mathrm{i}, \mathrm{j}}$; try for example:
$k:=2 \quad \mathrm{i}:=0 \quad \mathrm{j}:=1 \quad\left(P^{k}\right)_{\mathrm{i}, \mathrm{j}}=0.225$
Hence P^{k} is the transition matrix for k periods. What happens if you increase k step by step? $\mathrm{k}:=1$

$$
\mathrm{P}^{\mathrm{k}}=\left[\begin{array}{ccc}
0.25 & 0.5 & 0.25 \\
0.8 & 0.1 & 0.1 \\
0.4 & 0.2 & 0.4
\end{array}\right]
$$

$$
\mathrm{P}^{\mathrm{k}}
$$

Increasing the exponent k , the matrix P^{k} converges very quickly, showing the same distributions in every row.
The unconditional probability distribution of $x_{i}(i:=0 . .2)$ after k periods is:
$\mathrm{k}:=1$
$\pi_{0} \cdot \mathrm{P}^{\mathrm{k}}=\left(\begin{array}{lll}0.4833333 & 0.2666667 & 0.25\end{array}\right)$

Unconditional distribution

x
with the (unconditional) expectation:

$$
\pi_{0} \cdot \mathrm{P}^{\mathrm{k}} \cdot \mathrm{x}=(1.7666667)
$$

Now rise k again. For high k this distribution equals the rows in P^{k}. This means that the initial distribution π_{0} becomes meaningless if time passes by. Verify this for different initial distributions.

A distribution π is called stationary if it satisfies for all k
$\operatorname{Prob}\left(x_{k}\right)=\operatorname{Prob}\left(x_{k-1}=\pi\right.$
that is, if the distribution remains unaltered with the passage of time. Because the unconditional probability distributions evolve according to
$\operatorname{Prob}\left(\mathrm{x}_{\mathrm{k}}\right)=\operatorname{Prob}\left(\mathrm{x}_{\mathrm{k}-1}\right) \cdot \mathrm{P}$
a stationary distribution must satisfy $\pi=\pi \cdot \mathrm{P}$, which can be also expressed as the linear system $\pi \cdot(\mathrm{P}-\mathrm{I})=0$. However, this equation is homogenous linear and has no unique solution. But we know that π is fixed by the additional condition $\Sigma \pi_{i}=1$. A small program helpes to solve the equation under this restriction:

$$
\pi(\mathrm{P}):=\left\lvert\, \begin{aligned}
& \mathrm{n} \leftarrow \mathrm{zeilen}(\mathrm{P})-1 \\
& \Pi \leftarrow \mathrm{P}-\operatorname{einheit}(\mathrm{n}+1) \\
& \text { for } \mathrm{i} \in 0 . . \mathrm{n} \\
& \Pi_{\mathrm{i}, \mathrm{n}} \leftarrow 1 \\
& \text { for } \mathrm{i} \in 0 . . \mathrm{n} \\
& l_{\mathrm{i}} \leftarrow 0 \text { if } \mathrm{i}<\mathrm{n} \\
& \mathrm{l}_{\mathrm{i}} \leftarrow 1 \text { otherwise } \\
& \text { "No unique solution!" on error } \mathrm{r}^{\mathrm{T}} \cdot \Pi^{-1}
\end{aligned}\right.
$$

$$
\begin{aligned}
& \text { Stationary distribution } \\
& \hline 0
\end{aligned}
$$

If for all initial distributions π_{0} it is true that $\lim _{\mathrm{k} \rightarrow \infty} \pi_{0} \cdot \mathrm{P}^{\mathrm{k}}$ converges all to the same π which satisfies $\pi \cdot(P-I)=0$, we say that the Markov chain is asymptotically stationary with a unique invariant (i.e. ergodic) distribution. The following theorem can be used to show that a Markov chain is asymptotically stationary:

Theorem: Let P a stochastic matrix with $\left(\mathrm{P}_{\mathrm{i}, \mathrm{j}}\right)^{\mathrm{k}}>0$ for some value of k and all i and j . Then P has unique stationary distribution, and the process is asymptotically stationary.

To prepare the random simulation of the outcome from a Markov chain use these programs:

$$
\operatorname{rdmultinom}(\pi):=\left\lvert\, \begin{aligned}
& \pi \leftarrow \pi^{\mathrm{T}} \\
& \mathrm{n} \leftarrow \operatorname{zeilen}(\pi)-1 \\
& \mathrm{r} \leftarrow \operatorname{rnd}(1) \\
& \mathrm{p} \leftarrow \pi_{0} \\
& \mathrm{z}_{0} \leftarrow 1 \text { if } 0 \leq \mathrm{r}<\mathrm{p} \\
& \mathrm{z}_{0} \leftarrow 0 \text { otherwise } \\
& \text { for } \mathrm{i} \in 1 . . \mathrm{n} \\
& \mathrm{z}_{\mathrm{i}} \leftarrow 1 \text { if } \mathrm{p} \leq \mathrm{r}<\mathrm{p}+\pi_{\mathrm{i}} \\
& \mathrm{z}_{\mathrm{i}} \leftarrow 0 \text { otherwise } \\
& \mathrm{p} \leftarrow \mathrm{p}+\pi_{\mathrm{i}} \\
& \mathrm{z}_{\mathrm{n}} \leftarrow 1 \text { if } \mathrm{r}=1 \\
& \mathrm{z}
\end{aligned}\right.
$$

$\operatorname{rdmarkov}\left(\mathrm{k}, \mathrm{P}, \pi_{0}, \mathrm{x}\right):=\| \mathrm{n} \leftarrow \operatorname{zeilen}(\mathrm{P})-1$ $\mathrm{M}^{\langle 0\rangle} \leftarrow \operatorname{rdmultinom} \pi_{0}$ for $\tau \in 1 . . \mathrm{k}$

$$
\binom{i \leftarrow \sum_{j=0}^{n} j \cdot\left(M_{j, \tau-1}=1\right)}{M^{<\tau>} \leftarrow \operatorname{rdmultinom}\left(P^{T}\right)^{<i>^{T}}}
$$

Now we are ready to start a simulation:
$\mathrm{k}:=50$
$\left.\operatorname{sim}:=\operatorname{rdmarkov} \mathrm{k}, \mathrm{P}, \pi_{0}, \mathrm{x}\right) \Leftarrow \quad \begin{aligned} & \text { Click with your mouse on the red field and press the } \\ & \text { F9-button to get another random selection! }\end{aligned}$ time := $0 . . \mathrm{k}$

Simulated Markov Chain

Example 2:

We call a state i a "reflecting state" if $\mathrm{P}_{\mathrm{i}, \mathrm{i}}=0$. In this example all states are reflecting:

$$
\mathrm{P}:=\left[\begin{array}{ccc}
0 & .5 & .5 \\
.5 & 0 & .5 \\
.5 & .5 & 0
\end{array}\right] \quad \mathrm{x}:=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \pi_{0}:=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)
$$

Now iterate the unconditional probabilities by increasing k .
$\mathrm{k}:=1$

Unconditional distribution

with the (unconditional) expectation:
$\pi_{0} \cdot \mathrm{P}^{\mathrm{k}} \cdot \mathrm{x}=(2.5)$

The probabilities jump alternately between state x_{0} and x_{2} converging to the stationary distribution:
$\pi(\mathrm{P})=\left(\begin{array}{lll}0.3333333 & 0.3333333 & 0.3333333\end{array}\right)$

A simulation of this process shows that one single state never appears in succession.
$\mathrm{k}:=50$
$\operatorname{sim}:=$ rdmarkov $\mathrm{k}, \mathrm{P}, \pi_{0}, \mathrm{x} \quad \Leftarrow$ Click with your mouse on the red field and press the F9-button to get another random selection!
time : $=0$.. k
Simulated Markov Chain

Example 3:

We call a state x_{i} an "absorbing state" if $\mathrm{P}_{\mathrm{i}, \mathrm{i}}=1$. In the following example this is state $\mathrm{x}_{2}=3$:
$\mathrm{P}:=\left[\begin{array}{ccc}.4 & .5 & .1 \\ .5 & .4 & .1 \\ 0 & 0 & 1\end{array}\right] \quad \mathrm{x}:=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad \pi_{0}:=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$

Now iterate the unconditional probabilities by increasing k.
$\mathrm{k}:=1$

After several steps this iteration converges to the stationary distribution:
$\pi(\mathrm{P})=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$
That means that in the long run we end in state $x_{2}=3$. Simulations verify this result:
$\mathrm{k}:=50$
sim := rdmarkov $\mathrm{k}, \mathrm{P}, \pi_{0}, \mathrm{x} \Leftarrow$ Click with your mouse on the red field and press the F9-button to get another random selection!
time := $0 . . \mathrm{k}$

Example 4:

Let $\quad P:=\left[\begin{array}{ccc}1 & 0 & 0 \\ .2 & .3 & .5 \\ 0 & 0 & 1\end{array}\right] \quad x:=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \quad \pi_{0}:=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$

There exists no unique stationary distribution:
$\pi(\mathrm{P})=$ "No unique solution!"

But there are 3 different stationary distributions. You will detect them by iterating P^{k} :
$\mathrm{k}:=1$

$$
\mathrm{P}^{\mathrm{k}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.2 & 0.3 & 0.5 \\
0 & 0 & 1
\end{array}\right]
$$

P^{k}

Example 5:

Suppose that an individual earns $\mathrm{m}=0,1,2,3$ money units per period with probability $\mathrm{Prob}_{\mathrm{m}}$ where

Prob $_{0}:=.25$
Prob $_{1}:=.25$
Prob $_{2}:=.25$
Prob $_{3}:=.25$
Assume that he consumes a quarter of his wealth each period. The transition law is approximated by rounding the consumption (cons) to the nearest integer:
rund(cons) := wenn(cons - floor(cons)<.5, floor(cons), ceil(cons))

Defining the possible states of wealth as
$\mathrm{i}:=0 . .12$
$\mathrm{x}_{\mathrm{i}}:=\mathrm{i}$
we obtain the following individual consumption function:

The transition matrix must be:

As an initial distribution of x we use for example $\pi_{0_{0, \mathrm{i}}}:=\frac{1}{13}$.

Let's check the validity of our model:
validity $\left(\mathrm{P}, \pi_{0}\right)=$ "O.K."

Iterate the transition matrix:
$\mathrm{k}:=1$

P^{k}

Do the same for the unconditional probabilities to approximate the stationary distribution:
$\mathrm{k}:=1$

with the (unconditional) expectation:
$\pi_{0} \cdot P^{\mathrm{k}} \cdot \mathrm{x}=(5.8846154)$

Here follows the direct way to compute the stationary distribution:

At last we simulate the wealth of this individual over time:
$\mathrm{k}:=50$
$\operatorname{sim}:=$ rdmarkov $\mathrm{k}, \mathrm{P}, \pi_{0}, \mathrm{x} \Leftarrow \Leftarrow \begin{aligned} & \text { Click with your mouse on the red field and press the } \\ & \text { F9-button to get another random selection! }\end{aligned}$ time : $=0 . . \mathrm{k}$

Try another probability distribution Prob $_{\mathrm{m}}$ of income!

Literature:

Judd, K.L.: Numerical Methods in Economics. Cambridge (MA)/London 1998, p. 85-84.

