

FH-Kiel University of Applied Sciences

© Prof. Dr. Andreas Thiemer, 2001

Markov Chains

Summary:

This worksheet offers some simple tools to handle with Markov chains. It will be shown how to compute the ergodic distribution and to generate random simulations.

Introduction (with Example 1)

A stochastic process is a sequence of random vectors. If we study discrete time models this sequence can be ordered by a time index k, taken to be integers in this worksheet. A stochastic process $\{x_k\}$ is said to have the Markov property if for all $\tau \ge 1$ and all k

 $Prob(x_{k+1} | x_k, x_{k-1}, \dots, x_{k-\tau}) = Prob(x_{k+1} | x_k)$

Assuming this property we call such a sequence a **Markov chain** which is characterized by the following three objects.

1. There is a vector x which records the possible values of the **state of the system**; for example:

$$\mathbf{x} := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

2. There is a quadratic **transition matrix** P, which records the probabilities of moving from one value of the state to another in one period; for example:

 $\mathbf{P} := \begin{bmatrix} 0.25 & 0.5 & 0.25 \\ 0.8 & 0.1 & 0.1 \\ 0.4 & 0.2 & 0.4 \end{bmatrix}$

3. There is a vector π_0 recording the probabilities (**initial distribution**) of being in each state at time k = 0; for example:

$$\pi_0 \coloneqq \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

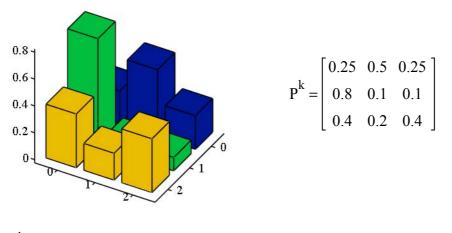
Be sure that the single probabilities sum up to 1. You may check this using the following subroutine, which is helpful to control the input of a matrix P with many entries:

validity (P, π_0) := $n \leftarrow zeilen(P) - 1$ for $i \in 0.. n$ $one_i \leftarrow 1$ "O.K." if $\left[\sum_{i=0}^n (\pi_0^T)_i = 1\right] \cdot (P \cdot one = one)$ "These are no probability measures!" otherwise

validity $(P, \pi_0) = "O.K."$

The probability of moving from state i to state j in k periods is $(P^k)_{i,j}$; try for example:

Hence P^k is the **transition matrix for k periods**. What happens if you increase k step by step? k := 1



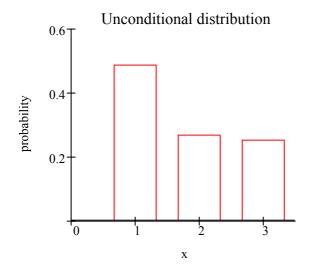
 $\mathbf{P}^{\mathbf{k}}$

Increasing the exponent k, the matrix P^k converges very quickly, showing the same distributions in every row.

The **unconditional probability** distribution of x_i (i = 0..2) after k periods is:

k := 1

$$\pi_0 \cdot P^k = (0.4833333 \ 0.26666667 \ 0.25)$$



with the (unconditional) expectation:

$$\pi_0 \cdot P^k \cdot x = (1.7666667)$$

Now rise k again. For high k this distribution equals the rows in P^k . This means that the initial distribution π_0 becomes meaningless if time passes by. Verify this for different initial distributions.

A distribution π is called **stationary** if it satisfies for all k

 $\operatorname{Prob}(\mathbf{x}_{k}) = \operatorname{Prob}(\mathbf{x}_{k-1}) = \pi$

that is, if the distribution remains unaltered with the passage of time. Because the unconditional probability distributions evolve according to

$$\operatorname{Prob}(\mathbf{x}_{k}) = \operatorname{Prob}(\mathbf{x}_{k-1}) \cdot \mathbf{P}$$

a stationary distribution must satisfy $\pi = \pi \cdot P$, which can be also expressed as the linear system $\pi \cdot (P - I) = 0$. However, this equation is homogenous linear and has no unique solution. But we know that π is fixed by the additional condition $\Sigma \pi_i = 1$. A small program helpes to solve the equation under this restriction:

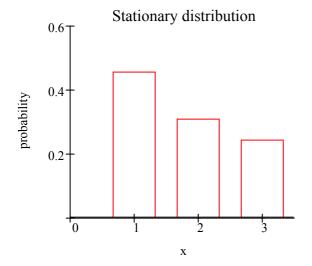
$$\pi(\mathbf{P}) := \mathbf{n} \leftarrow \text{zeilen}(\mathbf{P}) - 1$$

$$\Pi \leftarrow \mathbf{P} - \text{einheit}(\mathbf{n} + 1)$$
for $\mathbf{i} \in 0.. \mathbf{n}$

$$\Pi_{\mathbf{i},\mathbf{n}} \leftarrow 1$$
for $\mathbf{i} \in 0.. \mathbf{n}$

$$[\mathbf{i}_{\mathbf{i}} \leftarrow 0 \quad \text{if } \mathbf{i} < \mathbf{n}$$

$$[\mathbf{i}_{\mathbf{i}} \leftarrow 1 \quad \text{otherwise}$$
"No unique solution!" on error $\mathbf{i}^{\mathrm{T}} \cdot \Pi^{-1}$



 $\pi(P) = (0.4541485 \ 0.3056769 \ 0.2401747)$

Compare this distribution with the unconditional distribution for many transition periods k.

If for all initial distributions π_0 it is true that $\lim_{k \to \infty} \pi_0 \cdot P^k$ converges all to the same π which

satisfies $\pi \cdot (P - I) = 0$, we say that the Markov chain is **asymptotically stationary** with a unique invariant (i.e. ergodic) distribution. The following theorem can be used to show that a Markov chain is asymptotically stationary:

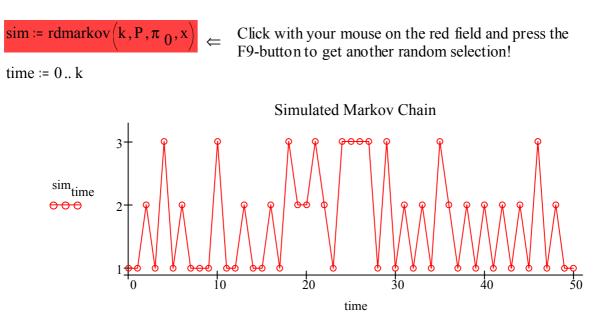
Theorem: Let P a stochastic matrix with $(P_{i,j})^k > 0$ for some value of k and all i and j. Then P has unique stationary distribution, and the process is asymptotically stationary.

To prepare the random **simulation** of the outcome from a Markov chain use these programs:

$$\begin{aligned} \text{rdmultinom}(\pi) &\coloneqq & \pi \leftarrow \pi^{T} \\ n \leftarrow \text{zeilen}(\pi) - 1 \\ r \leftarrow \text{rmd}(1) \\ p \leftarrow \pi_{0} \\ z_{0} \leftarrow 1 \quad \text{if } 0 \leq r
$$\begin{aligned} \text{rdmarkov}\left(k, P, \pi_{0}, x\right) &\coloneqq & n \leftarrow \text{zeilen}(P) - 1 \\ M^{\leq 0 \geq} \leftarrow \text{rdmultinom}\left(\pi_{0}\right) \\ \text{for } \tau \in 1 .. k \\ & | i \leftarrow \sum_{j=0}^{n} j \cdot (M_{j,\tau-1} = 1) \\ M^{\leq \tau \geq} \leftarrow \text{rdmultinom}\left(\left(p^{T}\right)^{\leq i > T}\right) \\ M^{T} \cdot x \end{aligned}$$$$

Now we are ready to start a simulation:

k := 50



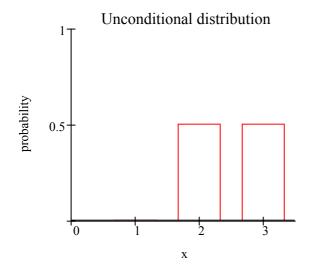
Example 2:

We call a state i a "reflecting state" if $P_{i,i}=0$. In this example all states are reflecting:

$$P := \begin{bmatrix} 0 & .5 & .5 \\ .5 & 0 & .5 \\ .5 & .5 & 0 \end{bmatrix} \qquad x := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \pi_0 := (1 \ 0 \ 0)$$

Now iterate the unconditional probabilities by increasing k.

k := 1



with the (unconditional) expectation:

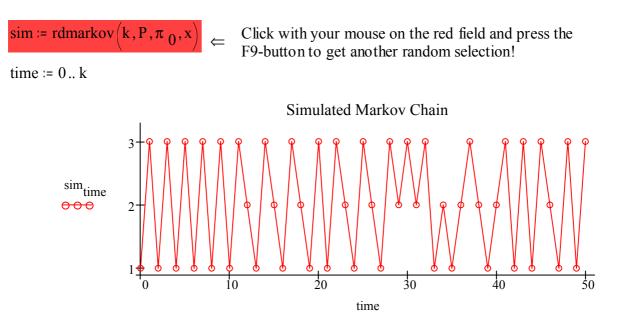
$$\pi_0 \cdot P^k \cdot x = (2.5)$$

The probabilities jump alternately between state x_0 and x_2 converging to the stationary distribution:

 $\pi(P) = (0.3333333 \ 0.3333333 \ 0.3333333 \)$

A simulation of this process shows that one single state never appears in succession.

k := 50

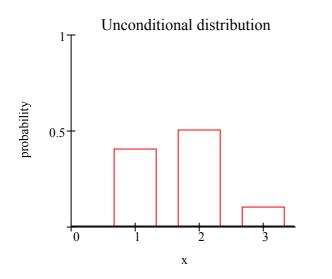


Example 3:

We call a state x_i an "absorbing state" if $P_{i,i} = 1$. In the following example this is state $x_2 = 3$:

$$P := \begin{bmatrix} .4 & .5 & .1 \\ .5 & .4 & .1 \\ 0 & 0 & 1 \end{bmatrix} \qquad \qquad x := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad \qquad \pi_0 := (1 \ 0 \ 0)$$

k := 1



with the (unconditional) expectation:

$$\pi_0 \cdot \mathbf{P}^k \cdot \mathbf{x} = (1.7)$$

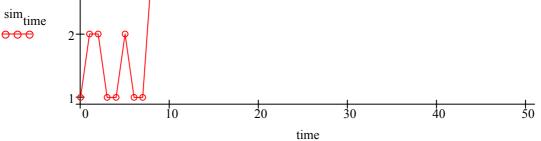
After several steps this iteration converges to the stationary distribution:

$$\pi(\mathbf{P}) = (0 \ 0 \ 1)$$

That means that in the long run we end in state $x_2=3$. Simulations verify this result:

k := 50

 $sim \coloneqq rdmarkov(k, P, \pi_0, x) \leftarrow Click with your mouse on the red field and press the F9-button to get another random selection! time := 0.. k$ Simulated Markov Chain



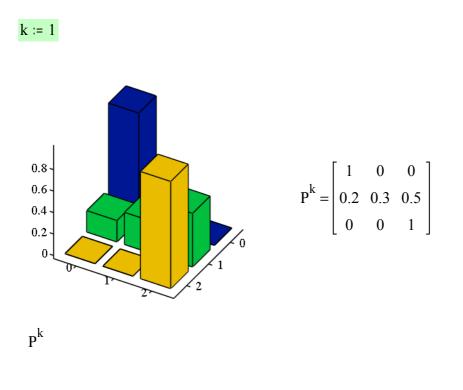
Example 4:

Let
$$P := \begin{bmatrix} 1 & 0 & 0 \\ .2 & .3 & .5 \\ 0 & 0 & 1 \end{bmatrix}$$
 $x := \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ $\pi_0 := (1 \ 0 \ 0)$

There exists no unique stationary distribution:

 $\pi(P)$ = "No unique solution!"

But there are 3 different stationary distributions. You will detect them by iterating P^k :



Example 5:

Suppose that an individual earns m = 0, 1, 2, 3 money units per period with probability Prob_m where

Prob $_{0} := .25$

Prob ₁ := .25

Prob 2 := .25

Prob ₃ := .25

Assume that he consumes a quarter of his wealth each period. The transition law is approximated by rounding the consumption (cons) to the nearest integer:

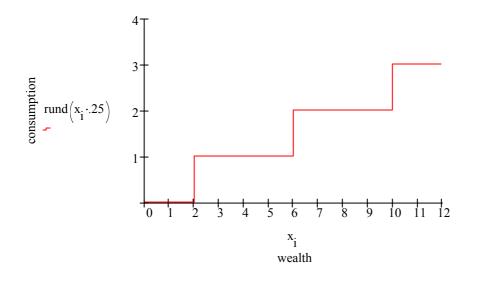
rund(cons) := wenn(cons - floor(cons)<.5, floor(cons), ceil(cons))</pre>

Defining the possible states of wealth as

i := 0..12

$$x_i := i$$

we obtain the following individual consumption function:



The transition matrix must be:

$$P := \begin{array}{ll} c \leftarrow .25 \\ \text{for } i \in 0..12 \\ \text{for } j \in 0..12 \\ \end{array}$$

$$P_{i,j} \leftarrow \text{Prob}_{0} \quad \text{if } i - \text{rund}(i \cdot c) = j \\ P_{i,j} \leftarrow \text{Prob}_{1} \quad \text{if } i + 1 - \text{rund}(i \cdot c) = j \\ P_{i,j} \leftarrow \text{Prob}_{2} \quad \text{if } i + 2 - \text{rund}(i \cdot c) = j \\ P_{i,j} \leftarrow \text{Prob}_{3} \quad \text{if } i + 3 - \text{rund}(i \cdot c) = j \\ P_{i,j} \leftarrow 0 \quad \text{otherwise} \\ \end{array}$$

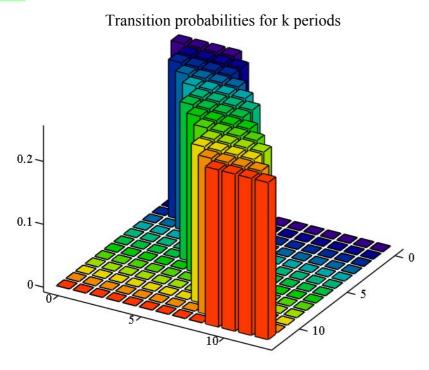
As an **initial distribution** of x we use for example $\pi_{0,i} := \frac{1}{13}$.

Let's check the validity of our model:

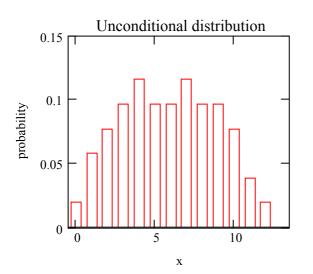
validity $(P, \pi_0) = "O.K."$

Iterate the transition matrix:

k := 1



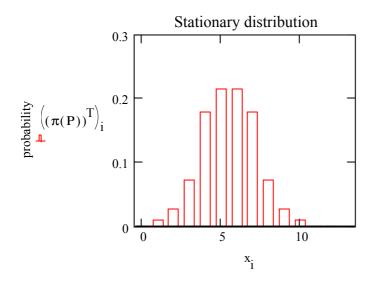
Do the same for the unconditional probabilities to approximate the stationary distribution:



with the (unconditional) expectation:

$$\pi_0 \cdot P^k \cdot x = (5.8846154)$$

Here follows the direct way to compute the stationary distribution:



At last we simulate the wealth of this individual over time:

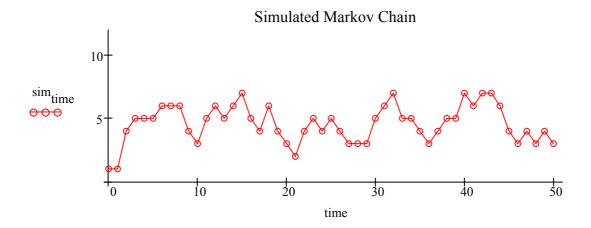
⇐

k := 50

sim := rdmarkov
$$(k, P, \pi_0, x)$$

Click with your mouse on the red field and press the F9-button to get another random selection!

time := 0.. k



Try another probability distribution Prob_{m} of income!

Literature:

Judd, K.L.: Numerical Methods in Economics. Cambridge (MA)/London 1998, p. 85 - 84.